If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+40t-80=0
a = 1; b = 40; c = -80;
Δ = b2-4ac
Δ = 402-4·1·(-80)
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{30}}{2*1}=\frac{-40-8\sqrt{30}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{30}}{2*1}=\frac{-40+8\sqrt{30}}{2} $
| 7x+3=54 | | X+3x-7x/2=9-x/2 | | w+2w+3w=13-2-4-1 | | X+3+4x-5=180 | | 8x+36=8x+14 | | -7(-5x-7)=329 | | 8y^2-11y+3=0 | | 46x-16=36 | | 5(8x-5)+1=40x | | 1.6y-12=-6 | | 5/50=10/x | | 3(x+7)=4x+9 | | x-14=390 | | 198-3x=218-9x | | x-9x=240 | | 52–7x=3 | | A=2(4x+5) | | (3m+1)+(2m+4)=180 | | 10/100=50/x | | 3x^2-3×2^0.5x-4x-4-2^0.5=0 | | -3=y/4+5 | | 2x(x+7)(x-2)=0 | | -20=6w-36-8w | | 7n-42=7 | | x-14=240 | | 2x(x+7)(x-2)=) | | x.5+5.6=6 | | x-9=390 | | 36n²=9 | | 7n-2+4n+6=180 | | 13+17=-5(7x-6) | | 3(2x-2)=-60 |